Synthesis of New Chiral C_{2}-Symmetrical Bis(oxazoline) Compounds

Chun Hua ZHANG, Nian Fa YANG*, Li Wen YANG
Department of Chemistry, Xiangtan University, Xiangtan 411105

Abstract

New chiral C_{2}-symmetrical bis(oxazoline) compounds bearing one isobutyl-, secbutyl-, benzyl- or isopropyl-substituent at the 4-position have been prepared and characterized.

Keywords: Synthesis, chiral, C_{2}-symmetrical, bis(oxazoline).

Chiral C_{2}-symmetrical bis(oxazoline)-metal complexs have played an important role in the catalytic enantioselective reactions ${ }^{1}$. Recent interest has been focused on structural modification of chiral C_{2}-symmetrical bis(oxazoline), for example, introducing the substituents at the 4 - and 5 -positions of oxazoline units ${ }^{2}$, to modify the bridges which link the two oxazoline units ${ }^{3}$, and the number of the coordinate atoms ${ }^{4}$.

Those methods mentioned above are intent to change the steric and electronic nature of the ligands. In this report, we designed and synthesized new chiral C_{2}-symmetrical bis(oxazoline) compounds 1a-d, which contain two pyrrole units (Scheme 1). These new compounds can be used as ligands to prepare tetradentate bis(oxazoline)-metal complexes. Up to now, there have not been reported on the synthesis and application of the corresponding compounds.

Scheme 1

1a: R=iso-Butyl; 1b: R=sec-Butyl; 1c: R=iso-Propyl; 1d: R=Benzyl
Reagents and conditions: i) $\mathrm{HCl} / \mathrm{EtOH}$, reflux, 86%; ii) $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}$, reflux, then
$\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}, 95 \%$; iii) $\mathrm{CCl}_{4} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{Py} / \mathrm{Ph}_{3} \mathrm{P} / \mathrm{L}-\mathrm{H}_{2} \mathrm{~N} \mathrm{HC}$ (R) $\mathrm{CH}_{2} \mathrm{OH}$, rt., 24 h.
In our synthetic process, $\mathbf{2}$ was prepared by following the literature method ${ }^{5}$. Then 2 and benzaldehyde ($\mathrm{mol} / \mathrm{mol} 2 / 1$) were reacted in the presence of a catalytic amount of

[^0]hydrochloric acid to give $\mathbf{3}$ with yield of 86%. $\mathbf{4}$ was obtained by hydrolysis of $\mathbf{3}$ with NaOH , then the reaction mixture was treated with acid.

Compounds 1 were prepared partially following the reference method ${ }^{6}$. The solution of $\mathrm{Ph}_{3} \mathrm{P}(1.85 \mathrm{~g}, 7.0 \mathrm{mmol})$ in 8 mL of $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Py}(1: 1)$ was added dropwise into the mixture of $4(0.37 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{L}^{2} \mathrm{H}_{2} \mathrm{NHC}^{*}(\mathrm{R}) \mathrm{CH}_{2} \mathrm{OH}(2.0 \mathrm{mmol}), \mathrm{CCl}_{4}(2 \mathrm{~mL})$, $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL})$, and $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Py}(8 \mathrm{~mL}, 1: 1)$. The reaction was conducted at rt . for 24 h and monitored by TLC. The products 1 were purified by flash column chromatography (petroleum ether/ethyl acetate $8 / 1$), followed by preparative thin layer chromatography (petroleum ether/THF 4/1). Thus, four novel C_{2}-symmetrical bis(oxazoline) compounds 1a-d were synthesized and characterized by elemental and spectral analysises ${ }^{7}$.

Acknowledgment

This work was supported by the Foundation for Academic Leader by the Education Department of Hunan province.

References and Notes

[^1]Received 19 April, 2002

[^0]: *E-mail:yangnianfa888@yahoo.com.cn

[^1]: A. K. Ghosh, Mathivanan, Cappiello. J, Tetrahedron: Asymmetry., 1998, 9, 1.
 D. A. Evans, C. S. Burgey, M. C. Kozlowski, S. W. Tregay, J. Am. Chem. Soc., 1999, 121, 686.
 W. Zhang, T. Hirao, I. Ikeda, Tetrahedron. Lett., 1996, 37, 4545.
 Z. L. Shang, Z. C. Shang, C. Y. Wang, Q. S. Yu, Chin. Chem. Lett., 2002, 13, 115.
 A. Helms, D. Heiler, G. Mclendon, J. Am. Chem. Soc., 1992, 114, 6227.
 H. Vorbriiggen, K. Krolikiewicz, Tetrahedron. Lett., 1981, 22, 4471.

 1a: yield 48%; mp: $177-178^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-51.8\left(\mathrm{c} 0.41, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \delta \mathrm{ppm}\right)$: 0.91 (d, 12H, J=6.6Hz, CH $)_{3}$, 1.31 (m, 2H, CH), $1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.16\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 4.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 4.37(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{N}-\mathrm{CH}$), 5.65 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 6.94 (d, 2H, J=7.2Hz, ArH), 7.25 (m, $3 \mathrm{H}, \operatorname{ArH}$), 10.80 (d, 2 H , $\mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{NH}$); MS (APCI) $\left[\mathrm{M}^{+}+1\right]: m / z 529,309$; Anal. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{2}$ (528.74): C, $74.96 ;$ H, 8.39 ; N, 10.59. Found: C, 75.204 ; H, 8.335; N, 10.218. 1b: yield 46.2%; mp: $155-156^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}=-17.72$ (c $0.47, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{HNMR}$ (DMSO-d $\left.{ }_{6}, \delta \mathrm{ppm}\right): 0.79(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.88\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.17(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}), $3.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 4.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}), 5.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}$, ArH), $7.25(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 10.80(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{NH})$; MS (APCI)[M $\left.{ }^{+}+1\right]: \mathrm{m} / \mathrm{z} 529,309$; Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{2}$ (528.74): C, 74.96 ; H, 8.39; $\mathrm{N}, 10.59$. Found: C, $75.204 ; \mathrm{H}$, $8.336 ; \mathrm{N}, 10.218$. 1c: yield 41.6%; mp: $164-165^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}=-41.4\left(\mathrm{c} 0.495, \mathrm{CHCl}_{3}\right)$; ${ }^{1}$ HNMR (DMSO- $\left.{ }_{6}, \delta \mathrm{ppm}\right): 0.88\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.95\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$) , $3.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 4.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}), 5.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.95(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=7.2 \mathrm{~Hz}, \operatorname{ArH}), 7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 10.80(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{NH}) ; \mathrm{MS}(\mathrm{APCl})\left[\mathrm{M}^{+}+1\right]: \mathrm{m} / \mathrm{z} 501$, 295; Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{2}$ (500.68): C, 74.38; H, 8.05; N, 11.19. Found: C, 74.507; H, 7.884; N, 11.003. 1d: yield 52.8%; mp: 137-138 ${ }^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}=+32.7\left(\mathrm{c} 0.49, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{HNMR}$ (DMSO-d $\left.\mathrm{d}_{6}, \delta \mathrm{ppm}\right): 1.96\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.96(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $3.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 4.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 4.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}), 5.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $6.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.26(\mathrm{~m}, 13 \mathrm{H}, \mathrm{ArH}), 10.87(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{NH}) ; \mathrm{MS}$ (APCI) $\left[\mathrm{M}^{+}+1\right]: ~ m / z ~ 597,343$. Anal. Calcd. for $\mathrm{C}_{39} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{2}$ (596.77): C, 78.49; H, 6.75; N , 9.39. Found: C, 79.079; H, 6.616; N, 9.357.

